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I. Introduction 

The calcuiation of the electrostatic potential due to a charge distribution 

with "ellipsoidal symmetry! is most easily carried out in ellipsoidal coordinates. 

Since these may be unfamiliar to some readers, the present note outlines the 

calculation in some detail. 

II. Ellipsoidal Shell --- 

Let us assume a cha,rge density which is a function of the variable 

s = (x2/a') + (y2/b2) + (z2/c2) (2.1) 

and has the form 

P(X,Y,Z) = f($ &+ f:, = /ds f(s) 6(s- $ - $ - $). (2.2) 

We shall first explore the potential and field due to a shell of charge whose 

density is 
2 6(s,- $ - $ - $). (2.3) 

The surface charge density on this ellipsoidal shell is not uniform. It is 

governed by the coordinate w , normal to the surface, whose direction cosines 

l,m,n, are determined by 

ds/2 = $- dx t& dy -+c% dz = 
R dx f m dy + n dz 

dX,Y,Z) 
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where 
a(x,y,z.) = (x2/a4 + y2/b4 + z2/c4p 

and 
R = (x/a')0 , m = (r/b*)o , n = (z/c2)u . 

Since the coordinate perpendicular to the surface satisfies 

we can write the charge density as 

2 6(s - $ - $ - $) = u 6(w) 

corresponding to a surface charge density u. 

dw .= R dx + m dy + n dz , 

(2.5) 

(2.6) 

(2:7) 

(2.8) 

III. Field Inside the Ellipsoidal Shell 

Consider the point P within the 

shell and a small conical spherical 

angle dR which intersects areas dA, 

and dA2 on the surface of the shell. 

The "radial" vectors (F',,;,) have the 

direction cosines I 

d.t,, mo, noI = *( x1-x2 

r12 
(3.1) 

The solid angles are defined by dR = dL$ = da2 with 

dQ, = 
dA1 -f t 
-p- (y.e,) , dR2 = 

42 + + 

1 

,2 (e2.eo) , 

2 

(3.2) 

where the unit vectors zoi $, s2 have components (~o,mo,no). (L,,ml,n,), 

(~2~m2~n2). 

The contribution to the field at P due to dAl and dA2, with surface charge 

densities o, and o2 is 
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+ qdA1 
dtp = eo(--;-- - 

u2dA2 e1 e2 
-)=;odn(zt~) 

1 G 
e 

1 
. e 

0 e2' eo 

(3.3) 

Using (2.6) and (3.1), we have 

r,2 Z;(z + 2) 

= (x1-x2)(x1+x~l/a2 + (y,-y,)(.v,+y,)/b2 + (z,-z,)(z,tz,)/c2 

= (x: /a2 t y:;b2 

~- I -Lo ~- I -Lo I Lo I Lo 

+ zf/c') - (x:/a' + y$b2 t z$c*) = 0. (3.4) 

Thus 
+ i 
el'eo 

+ .t 
e2 e. -=_- 

o1 e2 
(3.5) 

and 

dFp=O. (3.6) 

We have therefore shown that the field inside the ellipsoidal shell defined 

in (2.3) vanishes, due to pair cancellation, as occurs in the uniform spherical 

charge shell. 

IV. Ellipsoidal Coordinates 

Using Stratton's' notation with a scale'change for x, y, z, the ellipsoidal 

coordinates are defined for a > b > c by 

X2 
2 

a2+5 
tyt 

b2+ 5 
l - c2 < 5 (4.1) 

x2.+ Y2 z2 ---=s 
a*+n b2+o -c2- q 

Y2 _ .Z2~ - s x2 __ - 

a'+ i -b2-< -c2- rJ 

-b2 i I- < -c 
2 

(4.2) 

-a2 < c < -b2 (4.3) 
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The coordimates n, 5 correspond to angle-like coordinates, while 5 corres- 

ponds to a radial-like coordinate. (In fact, 5 + r2/s as r -t m .) 

The Laplacian separates in such a way that the solutions inside and 

outside the shell can be written as product functions in each of the variables 

5, 11. 5 . Since we already know that the solution inside the shell is con- 

stant, and since the region inside and ou~tside the shell is defined by 5'0 

and 5 > 0, continuity of the potential at the shell requires independence of 

n and 5 both inside and outside the shell. - The potential @ is therefore a 

function only of 5 , and Laplace's equation can be written as 

where 

Thus 

V2@(C) = 
4 

s(S-n)(S-5) 
R(S) L ( R(C)* ) 

& dE ' 

R(t) = {(t+a2)(t+b2)(t+c2))si . 

5>0 

is the solution of the potential outside the shell, and 

$(5) = B .(= + > 

(4.4) 

(4.5) 

(4.5) 

(4.7) 

is the solution inside the shell. Clearly V'@(c) vanishes for 5 > 0, 5 < 0. 

Near 5 = 0, the discontinuity in the slope of R(S)d@/dg leads to 

P@(E) = $h, R(C) S(S) = - gB abc 6(C) 
s nc 

If we differentiate (4.1) with respect to x,y.z,S, we obtain 

2(3--- xdx.~.~l = (&+&yZ2 
a +5 (cqy ) dc . 

(4.8) 

(4.9) 

Near 5 = 0, this can be written as 
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ds = dc/02 . (4.10) 

Using 
x2,s = (E+a')(n+ a')(c+ a) 

(a'- b2)(aZ- c') 

y2,s - i5+b’)(n+b2)(-c-b’) 
(a'- b')(b* - c2) 

z2,s - (w*)(-n-c’)(-s-c’) 
(a'- c2)(b2- c2) ' 

one can show, for 5 = 0, that 

~ = x2/a4 
1 

+ y2/b4 + z2,c4 = --- s ni 

u2 a2b2c2 

Thus 

and (4.8) becomes 

VQ(<) = - 3 6(C) = - g 6(s _ x’ _ i!! _ 2 ) 
a2 b2 c2 

(4.11) 

(4.12) 

(4.13) 

(4.14) 

(4.15) 

(4.16) 

confirming the uniform density within each shell. Comparison with (2.2) then 

leads to 

B = $ f(s) (4.17) 
0 

and 

@(X,Y,Z) = $j i-d, f(s) (4.18) 
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The region of integration is / 

shown shaded in the figure. S 

x2 
a'+t b2+t c2+t -7 

Interchanging the order of integration leads to 

l$(x,y,z) = g 7 dt = 
0 

B m J ds f(s) 
s(t) 

or s(t) 
ds f(s) 

(4.19) 

where (4.19) is normalized such that $(m) = 0, and where (4.20) is normalized 

such that $(O) = 0. 

If the functional form of the charge density, f(s), is known and can be 

integrated, (4.19) and (4.20) reduce to a single integral. 

V. Special Cases 

A. 3-D Gaussian chargedistribution - ~~--__- 

If we choose a Gaussian charge distribution defined by 

f(s) =..-!I- e-s , 

n3j2~abc 
(5.1) 

where Q is the total charge, one finds from (4.19) 
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L$3G(X,y,Z) = --Q-- 7 
exd- 

4$/Z E '~ 0 
dt 

0 
~(a'+t)(b'+t)(c*+t)}~ 

(5.2) 

normalized such that $(a) = 0, and valid for all relative values of a,b,c, 

(not just a>b>c). 

8. 2-D Gaussian charge distribution --___ -__- 

The potential for the 2-D Gaussian charge distribution can be obtained 

from (5.2) by proceeding to the limit c -t - . The charge per unit length, T, 

for finite z , is 

in which case (4.20) leads to 

$J~~(x,Y) = - --, { dt 
{(a2+t)(b2+t)}' 

(5.3) 

(5.4) 

where the potential is normalized such that @(O) = 0. With this normalization, 

it is clear that @I(W) + -CQ, as expected. 

C. 3-D uniform distribution 

In this case we choose 

f(s) = 

in which case 

Jrn ds f(s) = 
s(t) 

3Q(l-s)/(4rabc) , s < 1 

(5.5) 

(5.6) 
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Thus (4.19) becomes 

CQ 

{dt {(a'tt)(b2+~)~)'~ 

b3U(X.YJ)=,&$ (5.7) 
0 m 

J dt x2,.?!Ltz2>, 

to 
' a2 bZ c* 

where to(x,y,z) is the value of to for which 

X2 
2 

Z2 ---t-Y-,- = 1 
a'tt b'+to c2tt 

(5.8) 

0 0 

Inside the distribution, 
2 2 

I$ is a linear function of x ,y ,z 
2 

whose coeffi- 

cients are elliptic integrals. 

D. 2-D uniform distribution 

The potential for the 2-D uniform distribution is obtained once again 

by proceeding to the limit c + m , in which case Q = 4&3, so that (4.20) 

leads to 
2 2 

&+&) 2 2 

G,"(xYY)= g 
I 

7 (~ dt 
{(a2tt)(b'+t)}' ' 

xtJL< 1 
0 a2 b2 

I 

t Lfy2 
m aztt bz+t 

i 

(5.9) 
0 dt 

{ ((ab2+t)}k + $(aztt)(b2+n)' dt ' 

x2/a' fy2/b2 > 1 

Here t,(x,y) is the value of to for which 

x2/(a2tto) + y2/(b2tto) = 1 (5.10) 
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The potential is normalized such that $(O) = 0, ,leading necessarily to 

I$(-) +--00. Within the ellipse, one can easily show that 

QZU(X'Y) = *ibT ( _n;T. +g 1 
0 

(5.11) 

leading to the usual linear space charge force for a Kapchinskij-Vladimirskij 

phase space distribution.' 
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